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Abstract. A concept is presented where the conserved energy-momentum tensor is not fixed
uniquely. The addition of identically conserved tensors, which can be generated by adding
surface terms to a Lagrangian is viewed as a kind of gauge freedom which does not affect the
predictions for experiments. The canonical energy-momentum tensor obtained from the Noether
theorem is used to define a class of tensors which contains practically all known conserved
tensors, especially for Einstein’s theory of general relativity. But it also applies to situations
without full Poincaŕe symmetry, where other concepts fail. The main tool is the Belinfante–
Rosenfeld construction of a gravitational energy-momentum tensor from the tetrad Lagrangian
of general relativity; which turns out to be precisely a multiple of the Einstein tensor. The
canonical energy-momentum tensor obtained from the tetrad Lagrangian is analysed. It is shown
that periodic solutions of the Einstein field equations have zero mean energy. The energy density
of static solutions in vacuum is negative under quite general conditions, whereas the total energy
turns out to be positive through agreement with the Arnowitt–Deser–Misner surface integral.

1. Introduction

The concept of energy-momentum as a local, conserved tensor with positive energy density
can be considered well understood as long as gravitation is not included. However, in
general relativity theory there is a well known argument leading to the conclusion that no
covariant local energy-momentum tensor exists for gravity [1, p 467]. If a covariant tensor
is quadratic in the first derivatives of the metric, one can transform it at any point to local
Lorentz coordinates in which the first derivatives vanish, implying that the tensor is zero
everywhere. Many attempts have been made to escape from this argument by weakening
the conditions on the desired energy-momentum tensor.

From Maxwell theory we have two arguments in favour of an energy-momentum tensor
containing only first derivatives. The first is thatU(1)-gauge invariance requires that the
energy-momentum tensor depends only onFµν , the Maxwell field tensor; any tensor which
contains second derivatives of the potentialAµ is not gauge invariant. This originates in
the additive nature of theU(1)-gauge transformation

Aµ → Aµ + ∂µf. (1)

But in Einstein’s nonlinear theory of gravity we do not have this kind of additive gauge
transformations that restrict the form of the energy-momentum tensor. The Ricci tensor
Rkl and the Einstein tensorGkl = Rkl − 1

2gklR both are covariant and contain second
derivatives. The second argument is the behaviour of the densities at spatial infinity. For
fields that decay at 1/r at infinity a density quadratic in the first derivatives is always
integrable at infinity. But as can be seen from the Ricci and Einstein tensors, the field
equations guarantee integrability at infinity for second-derivative tensors as well.
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So these clearcut arguments fail for the construction of a gravitational energy-momentum
tensor, moreover no such tensor with positive definite energy density seems to exist. So the
basic idea is to follow the structure of the electromagnetic theory [1,5]. In analogy to the
equations

∂µF
µν = jν ∂νj

ν = 0 (2)

where charge conservation is guaranteed through the antisymmetry of the electromagnetic
field tensorF , in general relativity a linearized part, conserved due to the linearized Einstein
equations, is split off the Einstein tensor. This then serves as one part of the Einstein field
equations, and the rest is reckoned as a nonlinear source[1]. The Einstein field equations
Gkl = γ T kl are written as

∂iH
ikl = γ (T kl + tkl) (3)

with

tkl = 1

γ
(−Gkl + ∂iH

ikl) (4)

where the antisymmetry ofHikl in the indicesi, k leads to a vanishing divergence

∂k∂iH
ikl = 0. (5)

One arrives at the pseudo energy-momentum tensortkl for gravity which is not covariant.
But this way is criticized for its arbitrariness in the nonlinear part of the subtraction, leading
to an infinite number of possible tensors [1, section 20.3].

We may also consider covariant tensors containing second derivatives of the metric.
But when we try to preserve general covariance, we are invariably led to a null result:
total energy-momentum vanishes. This was recently demonstrated by Gotay and Marsden
[2]. They generalized the Belinfante–Rosenfeld (BR) [3, 4] construction from special
relativity to general relativity. In the special relativistic construction, the Poincaré invariance
of a Lagrangian is exploited to make the conserved canonical energy-momentum tensor
symmetric by adding a spin part. The BR symmetrized energy-momentum tensors for matter
and electromagnetic field are the generally accepted ones [5, 6]. When gravity is included
these BR-tensors may also be derived [5, 6] by varying the matter and electromagnetic field
Lagrangians with respect to the metric; these tensors are called Hilbert tensors [2]. In the
case of gravity this leads to a tensor which vanishes on-shell, i.e. when the field equations
are satisfied [5], since the Hilbert tensor for gravity is the Einstein tensor.

Gotay and Marsden [2] constructed a fully general covariant generalization of the special
relativistic procedure, with precisely the same result, namely that the Einstein tensor should
be the energy-momentum tensor for gravity. But since the null result implies that the total
energy density is not positive definite, with a gravitational part that is always negative or
zero, Gotay and Marsden suggested leaving out the gravitational part of the construction,
as did Landau and Lifschitz [5]. This again leaves us without a systematic procedure for
gravitation.

But it is remarkable that the generalized BR construction still works without the
gravitational part of the Lagrangian. The reason is that the general covariant method leads
to tensors with vanishing general covariant divergence for each part of the Lagrangian [7],
but then this does not represent a conservation law. As is well known the vanishing of
the general covariant divergence of the particle Hilbert tensor is equivalent to the geodesic
equations, and holds even when particle energy-momentum is not conserved.

Recently Baket al [8] applied the original special relativistic construction of Belinfante
[3] to the Einstein–Hilbert action defined onR4, where general covariance includes Poincaré
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invariance, and came up with a nonzero result. They claimed that this was due to them
using a first-derivative form of the Einstein–Hilbert Lagrangian, which is not scalar under
general coordinate transformations, so that the covariant result by Gotay and Marsden [2]
should not be applicable. We find that the result by Baket al [8] is due only to their specific
choice of a surface term added to the Lagrangian. We show that when we start from the
pure Vierbein or tetrad Lagrangian of gravity [11], then the special relativistic gravitational
field BR tensor is identical with the Einstein tensor density−(8πK)−1√−gGk

l , and the
gravitational field equations are equivalent to the vanishing of the combined BR tensor for
matter, electromagnetic field, and gravitation. Since our Lagrangian differs from the one
Bak et al used by a surface term only, we conclude that the tensor they suggested (their (32))
stems from the surface term alone. Since the surface term cannot be fixed by integrability
arguments, and the BR tensor depends on the choice of such a term, we are again open to
arbitrariness.

We now propose to take this arbitrariness seriously. We have found discussions on the
merits of different constructions for an energy-momentum tensor, but there are no arguments
that any construction is ill-conceived in the way that it contradicts with experiment. In the
case of gravity the theoretical criteria are positivity, symmetry and covariance, and they
cannot all be satisfied in one tensor. So we suggest that uniqueness for the conserved energy-
momentum tensor is not enforced, viewing it is a quantity which cannot be measured directly.
A classical example for such a kind of quantity is the electromagnetic four-potential. We
may choose any gauge for the calculation of the measurable physical quantities, the electric
and magnetic fields. With respect to the energy and momentum densities, we also argue
that their values cannot be measured directly. Only kinematic quantities, positions and
velocities of positions of particles, and their changes in time, such as electric currents,
are measured. We measure wavelength or frequencies of photons, of the electric currents
they induce. From these kinematical quantities the energy is inferred on the basis of some
theoretical formula. In order to get values, we always have to make assumptions about
certain quantities, for example the gauge of the electromagnetic field or the coordinate
system. Different assumptions then lead to different values. Once these assumptions have
been fixed, we may use energy-momentum conservation to predict the final values of the
kinematical quantities from their given initial ones, with the same result for any allowed
choice of gauges etc. We can uniquely predict the count of a Wattmeter or photomultiplier,
with defining a unique energy-momentum tensor.

On the other hand, the sources of the fields must be fixed uniquely since we could not
otherwise predict the strength of the fields generated by them and the forces exerted on
other particles or fields that enter the kinematical equations of motion. The sources are
fixed once a Lagrangian is defined up to surface terms, since the Euler–Lagrange equations
do not depend on surface terms. The Lagrangian itself need not be defined uniquely in
order to describe a unique physical situation. We illustrate this with two rather well known
and simple examples from nonrelativistic and relativistic mechanics.

First, let us consider the Lagrangian for a classical free nonrelativistic point particle,

L = 1
2mẋ(t)

2 (6)

which yields upon variation with respect tox(t) the Euler–Lagrange equation

mẍ = 0. (7)

This equation of motion is invariant under the Galilei transformation

x → x ′ = x − vt (8)
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whereas the Lagrangian changes by a boundary term:

L → L′ 1
2
mẋ ′2 + d

dt

(
mxv + 1

2
mv2t

)
. (9)

Since the variation is carried out with fixed boundary values forx(t), the equation of motion
is not affected. When we apply the Noether theorem in its simplest form, exploiting the
independence of the Lagrangian of the coordinatex, we obtain the conserved momentum
p = ∂L/∂ẋ in a different form fromL andL′:

p = ∂L

∂ẋ
= mẋ

p′ = ∂L

∂ẋ ′ = m(ẋ ′ + v).

(10)

So the functional forms of the conserved momenta are different for the different coordinate
systems, but we may use any of then in order to predict the motion of the particle in
configuration space. When initial conditions forx and ẋ are given, the finalx and ẋ
will be the same, independent of the form of the conserved momentum we employ in
the calculation. This is an example of nonuniqueness which is directly related to energy
momentum. A similar example is provided by the gauge-variant Lagrangian for a classical
relativistic point particle in an external electromagnetic field, given by

L = 1
2mẋ

µẋµ + qẋµAµ. (11)

Here the equations of motion are invariant under the gauge transformation (1), but the
Lagrangian transforms as

L → L′ = L− d

dτ
(qf ). (12)

So we may use as generalized energy-momentum variables

pµ = ∂L

∂ẋµ
= mẋµ + q(Aµ + ∂µf ) (13)

with arbitrary f , without losing energy-momentum conservation, and with identical
predictions for the particle motion in configuration space.

In general a derivation of conserved energy momentum from a Lagrangian will depend
on surface terms and so will not be unique, as is shown in this article for the BR construction.
So we take the attitude that it need not be unique, just as the Lagrangian itself, since we do
not need its uniqueness to arrive at unique predictions for the outcome of experiments.

The formal concept is to view energy momentum as a quantity which is not represented
by a single tensor or tensor density, but by a whole class of such objects, where two elements
of the class may differ by an identically conserved tensor. We use the term ‘identically
conserved’ for any current, the divergence of which vanishes as a functional of the fields,
irrespective of whether the field equations are satisfied or not. In this way we take surface
terms in the Lagrangian into account, and need not fix the Lagrangian uniquely. Accepting
such a concept obviously implies that the concept of an absolute, positive definite energy
density is given up. We feel free to take this step since so far no positive energy density
for gravity have been proposed. We build the class of conserved tensors from the canonical
energy-momentum tensor (CEM), as obtained from the Noether theorem. This is very
important, since in situations where we do not have the full Poincaré symmetry or full
general covariance, such as for particles in external fields, the CEM tensor or parts of it
may be the only conserved currents we have at all. This situation is ubiquitous, but rarely
discussed in the context of other concepts.
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This article is structured in the following way. In section 2 we look at the special
relativistic BR construction, its ambiguity, and prove the consistency between the
gravitational field equations and the conservation law. The BR construction is used to
split the Einstein tensor density into a canonical part and an identically conserved spin
part. In principle, this is the same idea as that behind the construction of pseudo energy-
momentum tensors, and these are shown to belong to the same class as the CEM tensor.
We use orthonormal tetrad, or Vierbien fields to derive the results in section 2 and show that
the BR tensor is the same whether constructed from tetrad fields or from the metric. Our
central result is derived under general conditions on a first-derivative action for the Vierbein
fields and matter, applicable to the Einstein–Hilbert action modified by a surface term, and
coupled to matter. We show that the tensor given by Baket al [8] stems from surface terms
alone. Spin-12 matter is included in space-time without torsion, and the electromagnetic
field is treated separately.

In section 3, the roles of the CEM and identically conserved tensors are elucidated. First
we discuss formal aspects (section 3.1), then the various cases matter and fields, individually
or together, and show that, for test particles in external fields (section 3.2), the currents of
the CEM tensor can be the only conserved quantities available. We show that the position
of the indices and the factor

√−g is decisive, and that the CEM tensor in this case is not
identical with the matter part of the source of gravitation. The discussion is extended to
quantum matter with spin-0 or spin-1

2 in external fields (section 3.3), and it is shown that
the BR tensor need not be symmetric since we need not have full Poincaré symmetry in
this case. Next, electromagnetic fields (section 3.4) and gravitational fields (section 3.5) are
included as dynamical fields. It is shown in section 3.5.1 that the Einstein field equations
are equivalent to the vanishing of the combined BR tensor for matter and fields. Finally, in
section 3.5.2, the CEM tensor for gravity is analysed with respect to positivity for periodic
and static solutions of the Einstein field equations. We give a summary in section 4.

2. Tetrad Lagrangian and Belinfante–Rosenfeld tensor

2.1. Preliminaries

We considerR4 with a tetrad fieldea, a = 0, 1, 2, 3 which forms a local basis of the tangent
space in each point ofR4

ea = aa
k∂k. (14)

We usea, b, c, d, . . . for tetrad indices, coordinate indices are denoted byi, j, k, l, . . .. The
dualθa, a = 0, 1, 2, 3 of the tetrad field (14) forms a local basis of the cotangent space with

θa = eak dxk (15)

where duality is equivalent to the following relation for the coefficients

ea
kebk = δab ea

keal = δkl . (16)

A tetrad field always induces a metric

gkl = ηabe
a
ke
b
l (17)

where ηab is the Minkowski metric, for which we use the Landau–Lifschitz [5] sign
convention+ − − − . The tetrad field is orthonormal with respect to the metric,

ea
keb

lgkl = ηab. (18)
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Given a metric we cannot necessarily find an orthonormal tetrad field such that (18) holds,
a topological criterion has to be satisfied, namely that the second Stiefel–Whitney class
vanishes [9]. We assume that it is satisfied, especially since only in this case a spin
connection exists, which is indispensable for the description spin-1

2 matter.
A linear connection is determined by a matrixωab of 1-forms,

ωab = γ abcθ
c (19)

with coefficients γ abc. We only consider the case where the tetrad field induces a
Riemannian structure ofR4, which requires that the torsion6a = dθa +ωab ∧ θb vanishes,
In this case the holonomic components0ijk of the connection reduce to the Christoffel
symbols derived from the induced metric (17), and the coefficientsγ abc can be expressed
through the anholonomy�abc [11], which is defined by

dθa = 1
2�

a
bcθ

b ∧ θc. (20)

We have [9–11]

�abc = eb
j ec

k∂j e
a
k − ec

j eb
k∂j e

a
k (21)

and

γ abc = 1
2(�bc

a −�c
a
b +�abc). (22)

Tetrad indices are raised and lowered withη, coordinate indices withg.
A spin structure is defined through the spin connection

σ = − 1
4ω

a
bγaγ

b (23)

whereγa are the Dirac gamma-matrices with

γaγb + γbγa = 2ηabI. (24)

The covariant derivative of a Dirac spinorψα, α = 1, 2, 3, 4 is given by [9, 10]

Dψα = dψα − σα
βψβ = θcDcψα. (25)

We explicitly have

Dcψ = ec
k∂kψ + 1

4γ
a
bcγaγ

bψ (26)

which depends on the derivatives of the tetrad field, but only via the anholonomy�. It is
a remarkable fact that this general-covariant structure is at the same time a local Lorentz
gauge-covariant structure, as was shown by Utiyama [14]. The scalar curvatureR is at the
same time the first-order Lagrangian for the Lorentz gauge fieldsγ abk = γ abce

c
k. Local

Lorentz gauge transformations affect only the tetrad and spin indices,

ea
k → 3(x)a

beb
k ψα → S(3(x))α

βψβ (27)

whereS(3) is the representation of the Lorentz group on the spinor space. The metric is
gauge invariant.
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2.2. Belinfante–Rosenfeld construction

We start from the Einstein–Hilbert action

SEH = c3

16πκ

∫
d4x

√−gR (28)

which contains second derivatives of the metric. These second derivatives can be eliminated
by adding a surface term which brings it into the first-order formS̄EH = c3

16πκ

∫
d4x

√−gR̄
with

R̄ = gkl(0ikj0
j
li − 0ikl0

j
ij ) (29)

as used by Baket al [8]. Another possibility is to first express the metric by the tetrad
field and then eliminate the resulting second derivatives of the tetrad field by adding some
surface term to obtain [11]

R̃ = �cac�
ba
b − 1

4�
a
bc�a

bc − 1

2
�abc�

b
a
c (30)

and the corresponding action

S̃EH = c3

16πκ

∫
d4x

√−gR̃. (31)

In this form R̃ contains only first derivatives, and resembles the one of the Lagrangian for
the electromagnetic field; it is well suited to our purposes, it is also a common starting point
for the construction of a Hamiltonian formulation of gravity [11].

We include matter either as classical point particles with action

SM,cl = m

2

∫
dτ ẋk(τ )ẋl(τ )gkl(x(τ )) (32)

or as quantum matter with action

SM,qm =


1

2m

∫
d4x e[mφφ∗ − ηab(ea

k∂kφ)(eb
l∂lφ

∗)] (spin 0)∫
d4x e<(mcψ̄ψ − ψ̄γ a ih̄Daψ) (spin 1

2)
(33)

wheree = √−g = deteak, and< denotes the real part. Equations (31) and (33) together
yield an action of the general form

S =
∫

d4x e3(�abc,8, ea
k∂k8) (34)

where8 is any multicomponent matter field with all components transforming as scalars
under coordinate transformations, only local Lorentz gauge transformations may affect the
spin indices.

From (34) the Lagrangian has the form

L(eak, ∂leak,8, ∂k8) = e3(�abc,8, ea
k∂k8). (35)

We consider the potentials�abc as dependent quantities, always expressed through the tetrad
field as

�abc = −eak(ebj ∂j eck − ec
j ∂j eb

k) (36)

which is derived from (21) with the help ofeak∂j eck = −eck∂j eak. We note that even in
the case of spin-12 matter we are not forced to give up this dependence. It is well known
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[4,12], and will be derived below, that we get consistent field equations with a symmetric
source tensor even in this case.

We now look at the BR construction, We use the Greek indicesα, β, . . . , µ, ν, . . . to
indicate the special relativistic nature of the calculation, they are raised and lowered with
η. For a LagrangianL(eak, ∂µeak) = L′(gij , ∂kgij ), with g and e related by (17), the BR
tensor is given by [3, 4, 6, 8]

TBR
µν = ηνν

′
TC

µ
ν ′ − ∂αh

µνα (37)

whereTCµν is the CEM tensor

TC
µ
ν = δµνL − ∂L

∂(∂µeak)
∂νea

k = δµνL′ − ∂L′

∂(∂µgij )
∂νg

ij (38)

and the contributionhµνα from spin that enters in (37) is defined by

hµνα = 1
2(L

µνα − Lανµ − Lναµ) (39)

with

Lµαβ = ∂L
∂(∂µeak)

(Sαβe)a
k = ∂L′

∂(∂µgij )
(Sαβg)ij . (40)

Here theSαβ are the antisymmetric infinitesimal generators of Lorentz transformation, acting
as

(Sαβe)a
k = ηαkea

β − ηβkea
α

(Sαβg)ij = (ηαigβj − ηβigαj )+ (ηαjgiβ − ηβjgiα).
(41)

The BR tensor does not depend on the choice of the configurations variables, since only
Noether currents are involved. For Lagrangians containing second derivatives Baket al [8]
gave an improved formula.

We now prove a first central result. The BR tensor is related to the gravitational field
equations by

TBR
k
l = −eak

(
∂L
∂eal

− ∂i
∂L

∂(∂ieal)

)
= −2gkj

(
∂L
∂gjl

− ∂i
∂L

∂(∂igjl)

)
(42)

where the second identity applies only if we do not have spin-1
2 matter present and can

express the Lagrangian through the metric.
In order to prove (42) we first calculate the spin parthµαβ and then use (35) for the

variation. We have

Lµαβ = ∂L
∂�abc

∂�abc

∂(∂µedk)
(Sαβe)d

k

= ∂L
∂�abc

eak{ηβk(ebµecα − ec
µeb

α)− ηαk(eb
µec

β − ec
µeb

β)} (43)

and calculatehµαβ according to (39) to

hµαβ = − ∂L
∂�abc

eakη
αk(eb

µec
β − ec

µeb
β) (44)

where we made use of the antisymmetry of� in the lower indices. Next we calculate
ea
k( ∂L
∂ea l

− ∂i
∂L

∂(∂iea l )
). Ignoring matter fields for a moment, we have

∂L
∂eal

= 3
∂e

∂eal
+ e

∂3

∂�dbc

∂�dbc

∂eal

= − ealL + ∂L
∂�dbc

[ed i(δ
a
c ∂leb

i − δab∂lec
i)− eaie

d
l(ec

j ∂j eb
i − eb

j ∂j ec
i)] (45)
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and

∂i
∂L

∂(∂ieal)
= ∂i

[
∂L
∂�dbc

ed l(δ
a
c eb

i − δabec
i)

]
. (46)

Combining (45) and (46) we obtain

ea
k

(
∂L
∂eal

− ∂i
∂L

∂(∂ieal)

)
= −δkl L + ea

k ∂L
∂�dbc

[ed i(δ
a
c ∂leb

i − δab∂lec
i)

−eaied l(ecj ∂j ebi − eb
j ∂j ec

i)] − ea
k∂i

[
∂L
∂�dbc

ed l(δ
a
c eb

i − δabec
i)

]
= − δkl L + ∂L

∂�dbc
[ed i(ec

k∂leb
i − eb

k∂lec
i)] − ∂i

[
∂L
∂�dbc

ed l(ec
keb

i − eb
kec

i)

]
= − δkl L + ∂L

∂�dbc

∂�dbc

∂(∂keai)
∂lea

i + ∂ih
k
l
i = −TBRkl. (47)

When we include matter fields we get the additional term

ea
k ∂L
∂(eaj ∂j8)

δad∂l8 = ∂L
∂(∂k8)

∂l8 (48)

from the variation with respect toeal , which is the correct contribution of the matter fields
to the BR-tensor since there is no contribution to the spin part from the matter fields due to
their behaviour as scalar under coordinate transformations. This completes the proof of (42).

An immediate consequence from (42) is that the characteristic properties of the BR-
tensor, its symmetryTBRlk = TBR

k
l and conservation property∂kTBRkl = 0, also follow

from the gravitational field equations. From (42) and the known result of the variation of
the Einstein–Hilbert Lagrangian with respect tog, the BR-tensor for gravitation alone is
given by

TBR
k
l = − c4

8πκ

√−gGk
l. (49)

For the case of spin-1
2 matter we have reproduced the less evident result that the source

for the gravitational field is a symmetry tensor. Here the symmetry is a consequence of
the matter field equations [14], and nota priori valid as in the case of classical and spin-0
matter.

When we extend our result to the case with the electromagnetic field, we have to be
careful, since the action

SEM = 1

4µ0c

∫
d4x

√−ggklgk′l′FklFk′l′ (50)

is not of the form of (35). But the common energy-momentum tensor for the electromagnetic
field is the Hilbert tensor, and can be obtained by varying the Lagrangian in (50) with respect
to gµν [5]. Only that, in this case, its form is not immediately identical with the BR-tensor
for this field, since the electromagnetic field equations are used to derive this result. We
will see in the next section that in order to avoid meaningless null results, it is necessary to
distinguish between identities which hold for all fields and those which hold only on-shell.
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3. Canonical energy-momentum tensor density class

3.1. Formal aspects

We know that we need not fix a Lagrangian uniquely in order to get unique Euler–Lagrange
equations. To any LagrangianL0 defined on a four-dimensional manifold with a given set
of coordinates, we may add a surface termL′,

L0 → L0 + L′ (51)

whereL′ has the form

L′ = ∂µB
µ (52)

in any of the given set of coordinates; we call this an ordinary divergence. The structure
of the surface term has to be preserved under coordinate transformations. We give two
simple examples. If we are onR4 and have all Poincaré transformations as coordinate
transformations available, the form of a conventional divergence is preserved under these.
On the other hand, if we are in general relativity with the whole diffeomorphism group
available, any term of the kind

L′ = √−gDiV
i (53)

can be written as a conventional divergence in any coordinates ifV is a general covariant
vector [1].

The Euler–Lagrange equations obtained fromL0 andL0 +L′ are identical. So, in order
to derive the field equations, we need to know only the class of Lagrangians to whichL0

belongs, where the class is defined as an equivalence class of functionals on the fields, with
equivalence up to the addition of a conventional divergence. It is obvious that we cannot
expect that the CEM tensors derived from different elements such as a class of Lagrangians
are identical. But it is straightforward to show that any ordinary divergence leads to an
identically conserved tensor. By which we mean any functionalHµ

ν on the fields with
∂µH

µ
ν = 0 for all fields, and not only for those which satisfy the field equations. Tensors of

the formHµ
ν = ∂λh

λµ
ν with h antisymmetric inλ andµ are the standard examples. It is less

obvious that the BR tensor obtained from a surface term does not vanish. This follows from
comparison of the result obtained from Baket al [8] with ours. Both their (29) and our (30)
Lagrangian differ from the Einstein–Hilbert Lagrangian by a surface term. We obtained the
Einstein tensor as BR tensor, whereas they obtained in addition an identically conserved
tensor, their (32), in which the Einstein tensor has been eliminated with the help of the field
equations [13]. So two aspects become clear. First, the improved BR construction [8] does
not lead to a unique energy-momentum tensor for a class of Lagrangians, second we must
avoid using the field equations in order to avoid meaningless null results. The first point
leads up to define the energy-momentum tensor only up to an identically conserved one, so
that the divergence will be the same for the whole class of these tensors, the second point
leads us to define the elements of this class as functionals on the whole space of fields, not
only on-shell. This means that we exclude the field equations for formal manipulations,
with the advantage that we can avoid null results and moreover identify the individual parts
of the tensors that belong to particles or the various fields, respectively. Using the field
equations would mix these parts.

For a given class of Lagrangians, we finally define the conserved energy momentum as
that class of tensor-valued functionals on the whole space of field configurations to which
the CEM tensor belongs. Equivalence here is ‘up to the addition of an identically conserved
tensor’. In the case of the Einstein–Hilbert action many known examples belong to this
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class: the Einstein tensor, the BR-tensor, all pseudo EM tensors. We generally assume that
any representative of the given class of Lagrangians can be written as a sum of a particle
or matter Lagrangian,LM , an electromagnetic field part,LEM , and a gravitational partLG.
Not all of these parts need to be present, we also consider cases where some fields are
external, non-dynamical background fields not subject to variation.

3.2. Classical point particles in external fields

We look at a classical point particle in external fields with action

SM,cl =
∫

dτ
[m

2
ẋk(τ )ẋl(τ )gkl(x(τ ))+ qẋk(τ )Ak(x(τ ))

]
(54)

which extends to (33) to include the electromagnetic coupling. The fieldsgkl and Ak
are considered as external, non-dynamical background fields which are not subject to
variation. In general we will not have a conserved current, but if we can find a coordinate
system in which we have translation invariance with respect to one coordinate, we may
apply the Noether theorem to obtain the corresponding conserved current. A common
example is energy conservation for time-independent fields: if∂0g = ∂0A = 0 then
ṗ0 = d(δL/δẋ0)/dτ = 0. The (conserved) energy-momentum tensor for (54) is given
by

TC,M
k
l(x) =

∫
dτ

∂L
∂ẋl

ẋkδ4(x − x(τ)) (55)

since the propertẏpl = 0, pl = δL/δẋl is equivalent to∂kTC,Mkl(x) = 0. With standard
rules for delta-functions we carry out theτ -integration in (55) and obtain

TC,M
k
l(x) = pl(t)v

k(t)δ3(xi − xi(t)) (56)

wherevk(t) = dxk(t)/dt , v0 = c. Integration over spacelike volumeV which contains the
particle yields the energy

E =
∫
V

d3x TC,M
0

0(x) = p0c. (57)

This energy is not determined uniquely when we consider the class of Lagrangians to which
(54) belongs. Surface terms may lead to the addition of a constant; any constant tensor is
identically conserved. For different gauges of the electromagnetic field we obtain different
values of the energy. Since the fields are external we do not have any compensating part
from the electromagnetic field energy. Choosing a time-dependent gauge function could
even mean that we lose energy conservation.

A further point to stress is the structure of the tensor (55). We cannot raise the covariant
momentum index with the metric without losing the correct expression for the energy. If
we look at the value ofp0 in a weak-field approximation withg00 = 1 + 28/c2 we have
[15]

p0c ' mc2 +m8+ qcA0 (58)

which depends in the expected way on the potentials8 andA0. If we multiplied the energy
density byg00 in order to obtain two contravariant indices on the density we would get

E′ =
∫
V

d3xTC,M
00(x) = g00p0c ' mc2 −m8+ qcA0 (59)

with unphysical dependence on the gravitational potential8. For the same reason we may
not lower the contravariant current index ofẋ ′ or divide by

√−g 6= 1. Nor may we replace
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p0c by mcẋ0, whence we would lose the dependence of the energy on the electromagnetic
potentialA0. This shows that the conserved energy-momentum tensor in given by (56), up
to identically conserved tensors. The types of the indices are uniquely determined, we have
a covariant momentum index, and a contravariant current index. The factor

√−g must
be included, so that in general relativity energy-momentum transforms as a tensor density.
So we have shown the weak-field limit fixes the conserved energy-momentum tensor for a
classical point particle to the CEM tensor density class.

3.3. Quantum matter in external fields

The considerations for classical particles carry over to spin-0 and spin-1
2 quantum matter

straightforwardly. We consider the actions (33) for particles in external fields, with the
electromagnetic field minimally coupled in addition. The corresponding CEM tensors are

TC,M
k
l(x) = δklLM +


1

m
e<[ηab(ea

k(∂k + iqAk)φ
∗)(ebk∂lφ)] (spin 0)

e<[ψ̄γ a ih̄ea
k∂lψ ] (spin 1

2).
(60)

The LagrangianLM vanishes on-shell, but not as a functional of arbitrary wavefunctions.
We observe that these tensors are not identical with the corresponding Hilbert tensors,
which are obtained by variation with respect to the tetrad. This holds only in the absence
of an electromagnetic field. The CEM tensors (60) in general are not symmetric. We
need compensating spin parts from the field LagrangiansLG andLEM as well as the field
equations if we want to achieve symmetry. The BR tensor together with these parts will
form the Hilbert tensor. The BR tensor obtained from the matter Lagrangian in external
fields need not be symmetric, since the proof of symmetry needs the full Poincaré invariance
[3], which need not be present there. So the CEM tensor is the only systematic construction
to obtain conserved energy or momentum currents for matter in external fields. It is the
only construction which can be applied in the presence of only partial symmetries, with the
conserved currents being those obtained from the Noether theorem.

3.4. Matter and electromagnetic fields

We add the action (50) of the electromagnetic field to the matter actions and keep the metric
fixed as a background field. The CEM tensor for the electromagnetic field is given by

TC,EM
k
l =

√−g
µ0

( 1
4δ
k
lF

ijFij − Fkj∂lAj ). (61)

If the metric is invariant under translations in thelth coordinate, then thelth component of
the total energy momentum is conserved,

∂k(TC,EM
k
l + TC,M

k
l) = 0. (62)

The CEM tensor is not gauge-invariant, but the on-shell BR tensor is. For the action (50)
the spin contribution to the BR tensor is given by [6].

TS,EM
k
l = ∂i(

√−gF kiAl). (63)

On-shell this can be written as

T osS,EM
k
l = Al∂i(

√−gF ki)+ √−gF ki∂iAl
= Alj

k
M + √−gF ki∂iAl (64)
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with the jkM the electrical current of the matter part,jkM = ∂LM/∂Ak. If we add the first
summand on the r.h.s. of (64) to the matter CEM tensor, the second to the electromagnetic
CEM tensor, we obtain the usual combined, gauge invariant, energy-momentum tensor,
which is also the Hilbert tensor.

3.5. Gravity included

3.5.1. Field equations. As we have seen in section 2, the BR-tensor derived from the
gravitational part of the Lagrangian can be split into two parts, the CEM tensorTC

k
l and

the spin part∂ihkl i . Sincehkl i is antisymmetric in the first and third indices, it is identically
conserved, which means that

∂k∂ih
k
l
i = 0 (65)

holds irrespective of whether the fields are solutions of the equations of motion or not. The
free gravitational field equations are brought into the form

∂ih
k
l
i = TC,G

k
l. (66)

Here we should make a remark on the sign conventions. We chose the Landau and Liftschitz
[5] time-like convention+−−− for g. All actions are chosen such thatδS/δgkl ∼ − 1

2c T
kl

with positive energy densityT 0
0 > 0 andT00 > 0. Therefore, the Einstein field equations

coupled to matter and electromagnetic field have the form

c4

8πκ

√−gGk
l = (TM

k
l + TEM

k
l) (67)

and we have a positive traceT = −R. In the space-like sign convention− + + + for
g as used by Misneret al [1] T 0

0 is negative, so their
√−gGk

l = 8πκc−4T kl leads to a
positive traceR = −T . SinceR depends on the sign convention, changing its sign with
that ofg, we see that conventions used by Landau and Lifschitz [5] and Misneret al [1] are
equivalent. This ‘Einstein sign’ [1] is not a question of convention, since taking a negative
sign on the r.h.s. of (67) leads to a change of sign of the source mass in the generated field,
e.g. the external Schwarzschild solution leading to repulsive gravitational forces.

The considerations of section 3.1 have shown that we may use the electromagnetic field
equations to bring (67) into the form

∂ih
k
l
i − TS,EM

k
l = (TC,G

k
l + TC,M

k
l + TC,EM

k
l) (68)

with an identically conserved l.h.s. and the overall CEM tensor as source, its conservation
following from the field equation. Since we do not obtain a spin part from the matter
Lagrangians, (68) can equivalently be written as

−TS = TC or TBR = TC + TS = 0 (69)

with overall spin and canonical partsTS andTC , respectively.
The form (68) allows us to convert any three-dimensional volume integrals of the energy

density over a volumeV into a Gaussian flux integral over the surrounding two-surfaceS,
a central idea behind the construction of pseudo energy-momentum tensors [1, 5]. Using
(63) we have∫
V

d3rTC
0

0 =
∫
V

d3r∂I (h
0

0
I − √−gF 0IA0) =

∫
S

d2SI (h
0

0
I − √−gF 0IA0) (70)

sinceh0
0

0 = F 00 = 0. Here, and further below, the capital Latin indicesI, J,K = 1, 2, 3
denote the space-like part only, with+ + + summation convention. The difference to
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the usual construction is that both sides in (68) are not necessarily symmetric. Usually
symmetry is required in view of angular momentum conservation. The canonical Noether
current obtained from Lorentz invariance is

jC
ikl = xiTC

lk − xkTC
li + Llik (71)

with canonical spin part

Llik = ∂L
∂(∂lψ)

(Sikψ) (72)

as in (40), butψ now standing for all fields;Sik are the generators of Lorentz transformations
as in section 2.2. The constructions by Belinfante [3] and Rosenfeld [4] showed that one
can add an identically conserved current to (71) in order to arrive at the conserved angular
momentum density

j ikl = xiTBR
lk − xkTBR

li . (73)

This equation is used to prove the symmetry of the BR tensor from angular momentum
conservation [3, 4, 6], we have

0 = ∂lj
ikl = T ikC − TC

ki + ∂lL
lik = TBR

ik − TBR
ki . (74)

So the logic is that angular momentum conservation always follows from Lorentz invariance,
if we do not have full Lorentz invariance, the BR tensor will not be symmetric. The
conservation of energy-momentum follows from translational invariance, independent of
Lorentz invariance.

3.5.2. Canonical energy-momentum tensor for gravityEinstein himself used the Noether
concept of conservation laws to show that his theory of gravitation conserved overall
momentum and energy. The conserved CEM tensor obtained is not symmetric, which
is commonly considered to be unsatisfactory. In our concept the symmetry is not a required
property for a single tensor. In the class of tensors generated by the CEM tensor we have
a conserved symmetric energy-momentum tensor, since the BR tensor is a multiple of the
Einstein tensor density, cf relation (49). This tensor is also covariant, but since it vanishes
on-shell, the related energy density has no positivity property, which would be sufficient to
prove the stability of the theory. So we analyse the CEM tensor obtained from the tetrad
LagrangianLG = (c3/16πκ)R̃ (30) with respect to positivity. Local positivity of the energy
density is not a necessary condition for the stability of the theory, the positivity of the total
energy suffices under proper conditions [17].

For the tetrad LagrangianLG the CEM tensor for gravity is given by

TC,G
k
l = c

(
δklLG − ∂LG

∂(∂keaj )
∂lea

j

)
. (75)

This tensor is purely quadratic in the first derivatives of the tetrad field, containing no second
derivatives. We look at this tensor for weak gravitational fields where we set

ea
j = δa

j − 1
2εδa

kηjlhkl (76)

with a symmetric perturbationhkl of the background, so that the metric is

gkl = ηkl + εhkl = O(ε2). (77)

We useε as a smallness parameter. When we scaleκ → κε and insert this together with
(76) into the field equation (68) we obtain the usual linearized field equation in order O(ε0).
This equation implies that the dominant part of the positive particle and electromagnetic
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field energy is compensated by the gravitational spin part when the sum of spin part and
canonical part vanishes. Since the spin part is separately conserved, no exchange of energy
can occur to or from particles or electromagnetic fields at this order. This already means
that particles cannot be created to annihilated at the cost of gravitational energy, the theory
is stable in the lowest order.

The lowest orderε contribution from the canonical energy-momentum tensor is of order
O(ε), given by

T
(1)
C,G

k
l = c4

64πκ
(2δcaω

db
d − 1

2ωa
bc − ωba

c)(δkc ∂lhb
a − δkb∂lhc

a − 1
2δ
k
l ω

a
bc) (78)

where

ωabc = ∂chb
a − ∂bhc

a (79)

is the linearization of 2�abc with respect toε. All indices are raised or lowered with the
help of η. Since the energy densityT (1)C,G

0
0 is not manifestly positive, we look at special

cases.
We first consider gravitational waves. In the transverse-traceless gauge [1, section 35.4],

characterized byhi0 = 0, hII = 0, ∂J hIJ = 0, (78) reduces to

T
(1)T T
C,G

0
0 = c4

64πκ
[3(∂0hIJ )

2 − 1
2(∂IhJK − ∂J hIK)

2]. (80)

When we insert plane waves, we see that the contributions from the terms(∂0hIJ )
2 and

− 1
2(∂IhJK − ∂J hIK)

2 in (80) are the same, so that this energy density becomes, when
averaged over a couple of wavelengths, identical with the positive one given by Misneret
al [1, (35.23)].

But the problem arises that this energy of periodic plane waves cannot be considered an
approximation to the energy of exact solutions, since any exactly periodic solution of the
vacuum field equation (66) has zero mean energy, for the following reason, If the tensor
hkl

i is a periodic function ofωt − k · x as a single variable, then it allows for a Fourier
decomposition

hkl
i(ct − k · x) = hk0l

i +
∞∑
n=1

(aknl
i sinn(ωt − k · x)+ bknl

i cosn(ωt − k · x)). (81)

Taking derivatives eliminates the contribution from the constant coefficientshk0l
i , so that the

average of∂ihkl i over any domain of periodicity vanishes. Hence it follows from (66) that
the averaged canonical energy density of periodic solutions of the Einstein field equations
vanishes. This remains true if any identically conserved tensor of the form∂iH

k
l
i is added

to the CEM tensor. This implies that gravitational waves can carry energy only to the degree
that they deviate from periodicity, but they do not necessarily do so. For example, exact
plane-waves pulses can be constructed [16] where the space-time manifold is flat outside
the wave pulse, which means that there is no total energy producing space–time curvature
outside the pulse [1, section 35.9]; this can be immediately shown using the surface integral
(70). This result implies that a system of matter cannot lose energy by emission of periodic
waves or zero-energy wave pulses, it cannot gain energy when interacting with such waves.

For static fields we obtain an energy density from the CEM tensor that is negative if
hI0 = 0 and∂0hkl = 0. The first-order contribution can be written as

T
(1)static
C,G

0
0 = c4

64πκ

[
− 1

2(∂αhββ)
2 − 7

4(∂βhαβ − ∂αhββ)
2 − 5

2(∂αh00 − 2
5∂αhββ)

2

− 3
4

∑
α 6=β 6=γ

(∂αhβγ − ∂βhαγ )
2

]
(82)
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which is manifestly negative. This means that the exact canonical energy density will be
negative as long as (82) can be considered a good approximation, as for weak, slowly
varying fields.

As an example we calculate the energy density of the exterior Schwarzschild solution
in isotropic coordinates from the full tensor (75) to

T SSC,G
0

0 = − c4

64πκ

M2

2r4

(
1 + M

2r

)8

M = mκ

c2
, r >

M

2
(83)

which is valid outside any static, spherically symmetric matter distribution. The density
(83) is negative everywhere outside the matter, but the total energy

∫
R3 d3r TC

0
0, which

includes the contribution from the matter, is not, since from (70) we have∫
R3

d3r TC
0

0 = lim
R→∞

∫
SR

d2SI h
0

0
I = lim

R→∞

∫
SR

d2SI
c4

16πκ
(∂J h

N
IJ − ∂Ih

N
JJ ) = mc2 (84)

where SR is the sphere of radiusR, and we could make use of the fact that in the
limit R → ∞ we need only the leading Newtonian contribution toh0

0
I (see (44)), with

hNIJ = δIJ2M/r. The Newtonian approximation in (84) agrees with the standard Arnowitt–
Deser–Misner (ADM) expression at infinity [1, section 20.1, 18], hence our theory leads
to the same results regarding positivity of the total energy for solutions of the Einstein
field equations in asymptotically flat pseudo-Euclidean space-times without singularities
[17]. The result (84) does not hold for black holes, where we have a total energy∫
r>M/2 d3r TC,G

0
0 = −511mc2/144 outside the horizon, but in the interior we do not have

translational invariance with respect to a time-like coordinate that would allow us to define
a Noether energy current. We finally note that the result (84) pertains to the case of exterior
Kerr–Newman geometries [1, section 33.2], so that the total energy of any symmetric
massive, charged, and spinning system of matter and fields without singularities is identical
with the energy of a corresponding non-interacting, fieldless system. The contributions from
the gravitational and electromagnetic fields are effectively zero.

4. Summary

Since most of the many energy-momentum tensors for gravity suggested so far cannot
be rejected on an experimental basis, we collected them in a class of tensors, where
members differ only by identically conserved tensors. This was motivated by the observation
that the physical evolution equations of any system are uniquely defined through a class
of Lagrangians where different members differ by surface terms, but lead to different
conserved Noether currents, since a surface term may give rise to an identically conserved
Noether current. In each case the class of energy-momentum tensors, in the case of
general relativity we have tensor densities, is generated by the canonical energy-momentum
tensor corresponding to the Lagrangian under consideration. This concept was shown to
be reasonable also in those cases where we do not have full Poincaré symmetry, as for
particles in external fields. In general, each one-parameter symmetry group leads to a
conserved Noether current, in case of a class of Lagrangians to a class of these, irrespective
of whether other symmetries are realized. Only when we have full Poincaré symmetry
of the Lagrangian, or class of Lagrangians, can we employ the BR construction to find a
symmetric energy-momentum tensor. We showed that this construction also depends on
chosen surface terms. With the concept of a class of energy-momentum tensors we do not
have an absolute energy, each member is equally suited to calculate the predictions for the
outcome of some experiment on the basis of given initial kinematic data. On the other
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hand, this means that we are always free to choose some specific Lagrangian for special
purposes, such as when we need a Lagrangian without second derivatives as a starting point
for the construction of a Hamiltonian formulation. When more than one such Lagrangian
exists, we have a choice among equivalent Hamiltonians. The tetrad Lagrangian of gravity
(30), on which we based our analysis, is of this type, and we found that the corresponding
BR tensor is precisely a multiple of the Einstein-tensor density.

Usually positivity of the energy density is considered in a desirable property, since it
entails the stability of the system. With respect to gravity, no such tensor has been found
so far, but here positivity of the total energy suffices for stability. In the case of the tetrad
Lagrangian, the energy density of the BR tensor is null in vacuum, and even negative inside
matter or electromagnetic fields, since the Einstein field equations are equivalent to the
vanishing of the combined BR tensor for gravity, matter and electromagnetic field. So we
looked at the canonical energy density, and showed that in general it is not positive. For
periodic solutions of the Einstein field equations it has mean zero, which implies that the
emission and absorption of gravitational waves must be treated as a dynamical problem
of the full nonlinear theory. For static solutions in vacuum the energy density is locally
negative under quite general assumptions, but for the total energy we obtained the standard
ADM result.
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